ar X iv : 0 90 8 . 37 24 v 1 [ m at h . A T ] 2 6 A ug 2 00 9 ON THE NON - EXISTENCE OF ELEMENTS OF KERVAIRE INVARIANT ONE
نویسنده
چکیده
We show that the Kervaire invariant one elements θj ∈ π2j+2−2S 0 exist only for j ≤ 6. By Browder’s Theorem, this means that smooth framed manifolds of Kervaire invariant one exist only in dimensions 2, 6, 14, 30, 62, and possibly 126. Except for dimension 126 this resolves a longstanding problem in algebraic topology.
منابع مشابه
ar X iv : 0 90 8 . 27 37 v 1 [ m at h . G R ] 1 9 A ug 2 00 9 On Bruck Loops of 2 - power Exponent , II ∗
As anounced in [BSS], we show that the non-passive finite simple groups are among the PSL2(q) with q − 1 ≥ 4 a 2-power.
متن کاملar X iv : 0 90 8 . 01 53 v 1 [ m at h . G T ] 2 A ug 2 00 9 On Fibonacci knots
We show that the Conway polynomials of Fibonacci links are Fibonacci polynomials modulo 2. We deduce that, when n 6≡ 0 (mod 4) and (n, j) 6= (3, 3), the Fibonacci knot F (n) j is not a Lissajous knot. keywords: Fibonacci polynomials, Fibonacci knots, continued fractions
متن کاملar X iv : 0 90 8 . 00 64 v 1 [ m at h . A T ] 1 A ug 2 00 9 MULTIDIMENSIONAL PERSISTENT HOMOLOGY IS STABLE
Multidimensional persistence studies topological features of shapes by analyzing the lower level sets of vector-valued functions. The rank invariant completely determines the multidimensional analogue of persistent homology groups. We prove that multidimensional rank invariants are stable with respect to function perturbations. More precisely, we construct a distance between rank invariants suc...
متن کاملar X iv : 0 90 8 . 33 93 v 1 [ m at h . A T ] 2 4 A ug 2 00 9 CAN ONE
We compare the classical approach of constructing finite Postnikov systems by k-invariants and the global approach of Dwyer, Kan, and Smith. We concentrate on the case of 3-stage Postnikov pieces and provide examples where a classification is feasible. In general though the computational difficulty of the global approach is equivalent to that of the classical one.
متن کاملar X iv : m at h - ph / 0 40 80 37 v 1 2 4 A ug 2 00 4 Integrable nonholonomic geodesic flows on compact Lie groups ∗
This paper is a review of recent results on integrable nonholonomic geodesic flows of left–invariant metrics and leftand right–invariant constraint distributions on compact Lie groups.
متن کامل